44 research outputs found

    Anti‐atherosclerotic effect of the angiotensin 1–7 mimetic AVE0991 is mediated by inhibition of perivascular and plaque inflammation in early atherosclerosis

    Get PDF
    Background and Purpose: Inflammation plays a key role in atherosclerosis. A protective role of angiotensin-(1-7) in vascular pathologies opened a possibility for therapeutic use of small molecule non-peptide Ang-(1-7) mimetics, such as AVE0991. The mechanisms of these vaso-protective effects of a Mas receptor agonist, AVE0991, remain unclear. Experimental approach: We investigated the effects of AVE0991 on the spontaneous atherosclerosis in ApoE-/- mice, in the context of vascular inflammation and plaque stability. Key Results: AVE0991 has significant anti-atherosclerotic properties in ApoE-/- mice and increases plaque stability, by reducing plaque macrophage content, without effects on collagen. Using descending aorta of chow fed ApoE-/- mice, before significant atherosclerotic plaque develops, we gained insight to early events in atherosclerosis. Interestingly, perivascular adipose tissue (pVAT) and adventitial infiltration with macrophages and T cells precedes atherosclerotic plaque or the impairment of endothelium-dependent NO bioavailability as a measure of endothelial function. AVE0991 inhibited perivascular inflammation, through the reduction of chemokine expression in pVAT, as well as through direct actions on monocytes/macrophages inhibiting their activation, characterized by IL-1ÎČ, TNF-α, MCP-1 and CXCL10 and differentiation to M1 phenotype. Pre-treatment with AVE0991 inhibited migration of THP-1 monocytes towards supernatants of activated adipocytes (SW872). Mas receptors were expressed in pVAT and in THP-1 cells in vitro and anti-inflammatory effects of AVE0991 were partially Mas dependent. Conclusions & implications: Selective Mas receptor agonist AVE0991 possesses anti-atherosclerotic and anti-inflammatory properties, affecting monocyte/macrophage differentiation and recruitment to perivascular space at early stages of atherosclerosis in ApoE-/- mice

    Quantum circuits for spin and flavor degrees of freedom of quarks forming nucleons

    Full text link
    We discuss the quantum-circuit realization of the state of a nucleon in the scope of simple symmetry groups. Explicit algorithms are presented for the preparation of the state of a neutron or a proton as resulting from the composition of their quark constituents. We estimate the computational resources required for such a simulation and design a photonic network for its implementation. Moreover, we highlight that current work on three-body interactions in lattices of interacting qubits, combined with the measurement-based paradigm for quantum information processing, may also be suitable for the implementation of these nucleonic spin states.Comment: 5 pages, 2 figures, RevTeX4; Accepted for publication in Quantum Information Processin

    Quantum walks: a comprehensive review

    Full text link
    Quantum walks, the quantum mechanical counterpart of classical random walks, is an advanced tool for building quantum algorithms that has been recently shown to constitute a universal model of quantum computation. Quantum walks is now a solid field of research of quantum computation full of exciting open problems for physicists, computer scientists, mathematicians and engineers. In this paper we review theoretical advances on the foundations of both discrete- and continuous-time quantum walks, together with the role that randomness plays in quantum walks, the connections between the mathematical models of coined discrete quantum walks and continuous quantum walks, the quantumness of quantum walks, a summary of papers published on discrete quantum walks and entanglement as well as a succinct review of experimental proposals and realizations of discrete-time quantum walks. Furthermore, we have reviewed several algorithms based on both discrete- and continuous-time quantum walks as well as a most important result: the computational universality of both continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing Journa

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements

    A search for resonances decaying into a Higgs boson and a new particle X in the XH → qqbb final state with the ATLAS detector

    Get PDF
    A search for heavy resonances decaying into a Higgs boson (H) and a new particle (X) is reported, utilizing 36.1 fb−1 of proton–proton collision data at collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle X is assumed to decay to a pair of light quarks, and the fully hadronic final state is analysed. The search considers the regime of high XH resonance masses, where the X and H bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XH mass versus X mass is scanned for evidence of a signal, over a range of XH resonance mass values between 1 TeV and 4 TeV, and for X particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XH and X masses, on the production cross-section of the resonance

    Prompt K_short production in pp collisions at sqrt(s)=0.9 TeV

    Get PDF
    The production of K_short mesons in pp collisions at a centre-of-mass energy of 0.9 TeV is studied with the LHCb detector at the Large Hadron Collider. The luminosity of the analysed sample is determined using a novel technique, involving measurements of the beam currents, sizes and positions, and is found to be 6.8 +/- 1.0 microbarn^-1. The differential prompt K_short production cross-section is measured as a function of the K_short transverse momentum and rapidity in the region 0 < pT < 1.6 GeV/c and 2.5 < y < 4.0. The data are found to be in reasonable agreement with previous measurements and generator expectations.Comment: 6+18 pages, 6 figures, updated author lis
    corecore